7 research outputs found

    Gravitational Collapse and Fragmentation in Molecular Clouds with Adaptive Mesh Refinement

    Get PDF
    We describe a powerful methodology for numerical solution of 3-D self-gravitational hydrodynamics problems with extremely high resolution. Our method utilizes the technique of local adaptive mesh refinement (AMR), employing multiple grids at multiple levels of resolution. These grids are automatically and dynamically added and removed as necessary to maintain adequate resolution. This technology allows for the solution of problems in a manner that is both more efficient and more versatile than other fixed and variable resolution methods. The application of AMR to simulate the collapse and fragmentation of a molecular cloud, a key step in star formation, is discussed. Such simulations involve many orders of magnitude of variation in length scale as fragments form. In this paper we briefly describe the methodology and present an illustrative application for nonisothermal cloud collapse. We describe the numerical Jeans condition, a criterion for stability of self-gravitational hydrodynamics problems. We show the first well-resolved nonisothermal evolutionary sequence beginning with a perturbed dense molecular cloud core that leads to the formation of a binary system consisting of protostellar cores surrounded by distinct protostellar disks. The scale of the disks, of order 100 AU, is consistent with observations of gaseous disks surrounding single T-Tauri stars and debris disks surrounding systems such as β\beta Pictoris.Comment: 10 pages, 6 figures (color postscript). To appear in the proceedings of Numerical Astrophysics 1998, Tokyo, March 10-13, 199

    A rarefaction-tracking method for hyperbolic conservation laws

    Full text link
    We present a numerical method for scalar conservation laws in one space dimension. The solution is approximated by local similarity solutions. While many commonly used approaches are based on shocks, the presented method uses rarefaction and compression waves. The solution is represented by particles that carry function values and move according to the method of characteristics. Between two neighboring particles, an interpolation is defined by an analytical similarity solution of the conservation law. An interaction of particles represents a collision of characteristics. The resulting shock is resolved by merging particles so that the total area under the function is conserved. The method is variation diminishing, nevertheless, it has no numerical dissipation away from shocks. Although shocks are not explicitly tracked, they can be located accurately. We present numerical examples, and outline specific applications and extensions of the approach.Comment: 21 pages, 7 figures. Similarity 2008 conference proceeding

    Numerical Solution Methods

    No full text
    corecore